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Abstract— In this paper, we study the orthogonal frequency division multiplexing (OFDM) system under 
imperfect channel-acquisition. We consider an OFDM system with a half-symbol-spaced receiver, where we 
employ a pilot symbol padding scheme for channel acquisition. Also, we use the Kronecker tensor product either 
at the transmitter to insert pilot symbols among data symbols or at the receiver to extract signals associated with 
pilots or data symbols. Also, we obtain the symbol detection with the minimal probability of error under 
imperfect channel acquisition. Results, both simulation and analytical, reveal that channel acquisition error 
degrades the system performance. However, the OFDM system with a half-symbol-spaced receiver shows better 
error probability and less acquisition error compared to the OFDM system with a symbol-spaced receiver. 
 
Keywords— Orthogonal frequency division multiplexing system; Half-symbol-spaced receiver; Pilot percentage; 
Channel acquisition; Pilot padding; Mean-squared error. 
 

Nomenclature  

Ia  Identity matrix of size a 

u2N  All-ones column vector of length 2N  

β1xb  Row vector of length b and zero elements except the last element which equals 

one 
k

N1φ  Row vector of length N with zero elements except for the k-th element which 

equals one 
baC   Complex matrix with a rows and b columns 

0axb   Null matrix with a rows and b columns 

   The Kronecker tensor product 

 E[X]  Expectation of the random variable X 
T()   The matrix transpose 
()    The Hermitian transpose 

 
 

1. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) has been widely applied in 

wireless communication systems because of its robustness against frequency selective 

multipath fading and its high efficiency bandwidth. Furthermore, the OFDM can be easily 

realized using an Inverse Fast Fourier Transform (IFFT) at the transmitter and a Fast Fourier 

Transform (FFT) at the receiver [1, 2]. 
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In wireless communication over multipath fading channels, a powerful channel 

acquisition technique is essential for correct OFDM signal detection at the receiver. Thus, a 

precise channel acquisition is crucial to maintain reliable and high-quality wireless 

communication services over multipath fading channels. However, due to fast fading 

fluctuations in frequency of selective fading channels, channel acquisition with high 

accuracy is a difficult task. In the OFDM system, channel acquisition can be implemented by 

adding extra pilot tones. In this scheme, channel coefficients are initially estimated at pilot 

tones, the estimated channel coefficients are then utilized to acquire channel coefficients at 

subcarriers associated with data symbols [3]. To address different types of fading channels, 

pilot tones can be either inserted into all of the OFDM subcarriers to address slow fading 

fluctuations or inserted into every OFDM symbol to address fast fading channel variations 

[3]. Inserting equal-spaced pilot tones into every OFDM symbol improves the tracking of 

channel variations leading to channel acquisition accuracy enhancement [4]. In [5], a 

pilot-assisted channel estimation analysis is performed for the OFDM system in multipath 

Rayleigh-fading channels; however, the analysis is performed under noise-free conditions. In 

the OFDM system with a noise-restricted channel, the pilot-assisted channel acquisition 

scheme will enhance the error performance as shown in [6]. For the OFDM system with 

known channel statistics, the channel acquisition errors can be significantly reduced by 

incorporating a linear minimum mean-squared error (LMMSE) estimator [7]. Besides, the 

computational complexity of the LMMSE estimator can be reduced using the singular value 

decomposition (SVD) at the expense of increasing the performance attenuation [8]. In the 

OFDM system with time-varying fading channels, the frequency domain channel matrix has a 

non-diagonal structure; therefore, the accuracy of channel acquisition will be adversely 

affected by the interference [9]. Increasing the number of inserted pilot symbols among data 

symbols rises the accuracy of channel acquisition. However, this improvement occurs at the 

expense of increasing the overhead which decreases the spectral efficiency of the OFDM 

system [10-13].  

According to [14], the symbol error probability of the OFDM system can achieve 

considerable improvement by upsampling the OFDM received signal, in time domain, at a 

rate of twice the transmitter rate. The upsampling in time-domain originates diversity 

enhancement at the receiver. Besides, wireless communication systems with upsampling are 

robust against the adverse impacts of the sampler’s timing mismatching between the 

transmitter and the receiver [14, 15]. The authors in [14] assume that the channel information 

is perfectly known at the receiver side. However, this assumption is difficult to satisfy in 

practical wireless communication systems. Thus, in this paper, we examine an upsampled 

OFDM system under channel acquisition errors and noise. We use an upsampling with 

factor of two where the system can be considered as an OFDM system with a 

half-symbol-spaced receiver. Also, we study the impact of having a half-symbol-spaced 

receiver on the channel acquisition errors. We employ a pilot-padding channel acquisition 

technique where we use the received pilot signals to acquire channel coefficients associated 

with data symbols [13]. We use the Kronecker tensor product either at the transmitter to 

insert pilot symbols among data symbols or at the receiver to extract signals associated with 

pilots or data symbols. Finally, we derive the optimum detection for the OFDM system with 

a half-symbol-spaced receiver under channel acquisition errors. 
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The remainder of this paper is structured as follows: section 2 formulates the problem. 

In section 3, receiver analysis is presented. Results and discussions are shown in section 4. 

Finally, this paper is concluded in section 5. 

2. POBLEM FORMULATION AND CHANNEL ACQUISITION       

2.1. Problem Formulation 

Consider an OFDM system with a half-symbol-spaced receiver, where an 

equally-spaced pilot-padding channel acquisition technique with Np pilot symbols is used. 

At the transmitter, for every information slot, with K symbols, a pilot symbol is added to 

formulate symbols segment with length N, where N = K(Np+1). The pilot padding process 

can be represented in matrix format as: 
T

ppdd )( CsCss                                                               (1) 

where sd =[s(1), s(2),…, s(KNp)] is the data symbols sequence row vector before pilots 

insertion, sp =[p(1), p(2),…, p(Np)] is the pilot symbols sequence row vector, the vector s 

represents the data symbols after pilots insertion and serial to parallel conversion,

 
1

 KKd
pN

0IIC , and )K(Np p 11  βIC are the pilot symbols padding matrices with 

sizes of 2NpN and 2NpKN, respectively. All symbols in the vector s are drawn from an 

M-array phase shift modulation (MPSK) constellation. For illustration purpose, let us assume 

that K= 3, and Np= 4, then the pilot padding can be graphically represented as in Fig. 1. 

  

 
Fig. 1. Pilot padding illustration example. 

  

The vector s is then used to modulate an N-orthogonal subcarriers using N-point 

inverse Fast Fourier Transform (IFFTN) resulting time domain OFDM samples vectors 

x=[x(1), x(2), . . ., x(N)]T  as shown in Fig. 2.  

A cyclic prefix sequence was incorporated to the OFDM samples in order to avoid 

block interference. The samples are then moved through a square-root raised-cosine pulse 

shaping filter. After filtering, the signal is transmitted to the destination over multipath 

fading channel and corrupted by an additive white Gaussian noise (AWGN) with variance 

N0. After filtering, the signal is sampled at a rate that is half the rate of the transmitter. In a 

matrix representation and after the cyclic prefix removal, the sampled signal can be 

expressed as [14]: 

r = G . IFFTN (s) + n                                                             (2) 

where ,)]2(,),1([ TNrr r  ,FFT sx N
TNnn )]2(,),1([ n is the time-domain noise vector, 

and NN 2CG denotes the time-domain channel matrix [14]. After 2N-point FFT (FFT2N) 

processing, the signal r can be described in frequency domain by:    
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represents the channel matrix in the frequency domain. Eq. (3) can alternatively be expressed 

as zhSIy  )( 2 , where S is a diagonal matrix with diagonal being the vector s, and 

N2uHh  is the channel coefficients vector. For convenience we assume that the average 

symbol energy is unity. 

 

 
Fig. 2. Block diagram of the OFDM system with a half-symbol-spaced receiver and pilot-padding channel 

acquisition where the block “×” represents the matrix multiplication. 

2.2. Channel Acquisition for the k-th Data Symbol 

The received signal associated with pilot symbols is employed to acquire channel 

information associated with data symbols [11-13]. If we denote the signal related to pilot 

symbols as 12  N
p Cy , and the signal related to the k-th data symbol as ,N

k
12 Cy then py

and ky  can be respectively extracted from vector y as indicated below: 

  ,pp yCIy  2                                                               (4) 

  ,k
k N

yφIy



12                                                             (5) 

where   p
T

pppp Nm ,)mN(y,),N(y),N(y 22  y and  Tk ))Nk(y,),k(y  y with 

   PP KNNKKkNk  ,,22,1  and ,1,,2,0  . Alternatively, Eqs. (4) and (5) can be 

written as [12, 14]: 

  ,pppp zhSIy  2                                                         
(6) 

 ,)k(s kkk zhy                                                              (7) 

where   ,pN
pp

12
2


 ChCIh   12

12


  Ck
Nk hφIh are channel vectors for the 

pilot and the k-th data symbols, respectively, pS is a diagonal matrix with diagonal being ps , 
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and )k(s denotes the k-th data symbol;   ,PN
pp

12
2

 CzCIz   12
12


  CzφIz k

Nk

are the noise vectors related to the pilot and the k-th data symbols, respectively. 

If we refer to the estimated channel coefficient at the k-th data symbol as kĥ , the 

channel acquisition error is then kkk
ˆ hhe  . The channel acquisition for the k-th data 

symbol can be achieved by using the orthogonality principle 0]E[ kkhe as [11-13 ]:  

  pppppppkppypkpk p
ˆ yRSASSAyASAh

11                                     (8) 

where PN*
pkkp )( 22 ChhA E is the cross-correlation matrix between kh and ph with the 

(m,n)-th element being ))n(h)m(h()n,m( pkkp
EA , PP NN

pppp )( 22   ChhA E is the 

auto-correlation matrix for channel coefficients associated with pilot symbols, and 

  PP
p

NN
pppppppy )( 22   CRSASyyR E with pp NN*

ppp
22 

 C]E[ zzR [11-13]. ppA and 

kpA are found using the Kronecker tensor product as follows: 

   Tphhppp CIACIA  22                                                  
(9) 

   Tphh
k

Nkp CIAφIA   212                                               (10) 

where 
NN

hh
22)(   ChhA E is the auto-correlation matrix of the channel coefficient vector 

h. Based on [13], the mean-squared error for the channel acquisition of the k-th data symbol 

is evaluated as 


2

1

2

2
1

m
kk )m(e( )E , which also can be written as: 

 ,trace ek A
2
1                                                             (11) 

where      22






  Ckkkk
*
kke

ˆˆ hhhheeA EE is the error auto-correlation matrix. We 

can use ppA and kpA to identify the Re matrix as shown below:   
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where 22CkkA  is the auto-correlation matrix for channel coefficients of the k-th data 

symbol. Using the Kronecker tensor product kkA can be represented as: 

     

    

   Tk
hh

k

Tkk

kk
kk

NN

NN

NN
[

















11

11

11

22

22

22

 

 

φIAφI

φIhhφI

hφIhφIA

E

]E

                                         
(13) 

3. SIGNAL DETECTION AND SYMBOL ERROR PROBABILITY ANALYSIS 

3.1. Signal Detection in the Presence of Channel Acquisition Errors 

The received signal associated with the k-th data symbol was obtained using the 

Kronecker tensor product as shown in Eq. (7). The noise samples at the sampler output for the 

https://www.mathworks.com/help/matlab/ref/kron.html#bt0autl-2_1
https://www.mathworks.com/help/matlab/ref/kron.html#bt0autl-2_1
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half-symbol-spaced receiver are correlated. This correlation between different noise samples 

should be removed before using the maximum ratio combining [14, 16]. Fortunately, the 

correlation can be eliminated by multiplying both sides of the Eq. (7) by   2
1

0


kN R , where 

22 C]E[ *
kkk zzR . After correlation elimination, Eq. (7) becomes: 

  kkkkkkk NksNN zRhRyRy 2
1

2
1

2
1

000 )(~ 
                             (14) 

For the sake of brevity, we do not mention the proof. 

The detection of the k-th data symbol is performed after receiving k
~y and obtaining 

kĥ . If kh  in Eq. (14) is conditioned on kĥ , then kh is Gaussian distributed with mean 

vector and covariance matrix given respectively as [13]:  

  kkkkkkĥ/h
ˆ)/(ˆ/[

kk
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(16) 

If the information bits are generated with the same probability, then the k-th data 

symbol can be detected with minimum probability of error by using the maximum 

likelihood estimation [13, 16 ] as: 

   kkykk k
ks myRmy   ~~)(ˆ 1

~                                                (17) 

where km refers to the mean of k
~y conditioned on kĥ , and   ]ˆ/~~[ kkky~k

hyyR  E indicates 

the covariance of k
~y conditioned on kĥ . Using Eqs. (14), (15), and (16), km and 

ky~R can be 

derived as   )k(sˆN kkk hRm 2
1

0
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3.2. Symbol Error Probability Analysis 

A mathematical expression of the symbol error probability (PE) of the system in    

Eq. (14) with MPSK and channel acquisition error is presented in this section. The PE is 

derived by finding the conditional error probability of the k-th symbol kkPE ĥ/ , then taking 

the expectation of kkPE ĥ/ . Based on [16], and Eq. (21) in [13], the conditional error 

probability of the symbol detection in Eq. (14) can be described by: 
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Furthermore, by utilizing the eigenvalue decomposition mentioned in [13, 16] the 

unconditional probability of error for the k-th data symbol is given:  
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where D1 and D2 are the eigenvalues of the following matrix [13]: 
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where 
0

1

N
 .Using kPE given in Eq. (19), the resulting PE for the OFDM system with a 

half-symbol-spaced receiver and channel acquisition error is given below as [14]: 

pp

N

kk,k
k N,,,m),K(mk,PEPE

p

211
1




                                  (21) 

4. RESULTS AND DISCUSSION 

In this section, we present MATLAB simulations to authenticate the aforementioned 

derived-theoretical results. We have performed simulations for OFDM systems with MPSK 

modulation under different signal-to-noise ratios (SNR) denoted by () and channel 

acquisition errors. For comparison purposes, we denote the OFDM system with a 

half-symbol-spaced receiver as OFDM-2, while we refer to the OFDM system with the 

symbol-spaced receiver as OFDM. In all simulations, we have considered transmission over 

noise and a quasi-static multipath fading channel with typical urban area power delay 

profile [17]. 

In Fig. 3, the PEs for the OFDM-2 system under perfectly-known channel coefficients 

assumption are compared with PEs for an equivalent one with imperfect channel acquisition. 

In the same figure, we also plot the PEs for the OFDM system under identical conditions for 

comparison aims. As predicted, the error performance of the OFDM-2 system surpasses that 

of the OFDM system even under perfectly-known channel assumption as stated in [14] or 

under channel acquisition errors as shown in the figure. Due to the reduction of channel 

acquisition errors, the PEs show improvement as the pilot percentage increases.  

 
Fig. 3. The PEs for the OFDM-2 and OFDM systems as a function of  (4PSK and N=16 are considered for       

all systems).   

For example and based on values withdrawn from Fig. 3, Table 1 compares the SNRs 

needed to reach PE of 10-2 at three pilot percentages; 0.5, 0.25, and 0.125 for OFDM and 

OFDM-2. As seen from the table, PE=10-2 can be reached at lower SNR for OFDM-2 

compared to OFDM. The same thing is correct when the channel is perfectly known. The last 
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row in Table 1 shows the SNR difference between the two systems. At a pilot percentage of 

0.125, where the channel acquisition error is at its highest level, the SNR difference is 

maximum and equals 8.5 dB. While the smallest SNR difference, which equals 5 dB, occurs 

when the channel is perfectly known, i.e., channel acquisition error is zero. Thus, using 

OFDM-2 can improve power efficiency, especially at low pilot percentage rates. 

 
Table 1. The required SNR to reach PE of 10-2. 

 

In Fig. 4, PEs are reported for OFDM-2 with 2PSK and 8PSK at different pilot symbol 

percentages. From the graph we can note that the symbol error probability of the OFDM-2 

system with 2PSK is better than 8PSK. Increasing the pilot percentage improves performance 

for both 2PSK and 8PSK. For example, in OFDM-2 with 2PSK modulation, to reach a PE of 

(4.38×10-2), the required SNR () is 5 dB with perfectly-known channel coefficients, 5.85 dB 

with 0.5 pilot percentage, and 7.155 dB with 0.125 pilot percentage.   

 

       
Fig. 4. PE of OFDM-2 with 2PSK and 8PSK as a function of  (the number of orthogonal sub-carriers is 32 for   

all systems). 

 

Likewise, in OFDM-2 with 8PSK, the PE at  =5 dB is 1.1916×10-1 when the channel is 

perfectly-known; however, we can reach an identical symbol error probability at  = 5.74 dB, 

and  = 6.902 with pilot percentages equal to 0.5 and 0.125, respectively. 

Fig. 5 provides the simulated mean-squared error (k) of the channel acquisition versus 

pilot symbol percentage (Np/N). In the figure, we also plot the k versus data symbol 

percentage (KNp/N).  

 
Perfectly 

known channel 

Pilot percentage used for channel acquisition 

0.5 0.25 0.125 

SNR OFDM [dB] 17 18.5 19.5 23.5 

SNR OFDM-2 [dB] 12 13 13.8 15 

SNR OFDM -2- SNR OFDM [dB] 5 5.5 5.65 8.5 
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Fig. 5. The mean squared error (k) as a function of Np/N, and as a function of KNp/N. 

 

It is apparent from this figure that increasing  reduces channel estimation errors. 

Furthermore, as can be seen from the graph, channel acquisition error can be improved by 

increasing the pilot percentage and decreasing the data symbol percentage. Therefore, we 

need to make a trade-off between channel acquisition error and bandwidth utilization 

efficiency. The intersection between k versus the pilot percentage curve and k versus the 

data percentage curve defines a point where we have a small acquisition error at high data 

symbol percentage along with low pilot symbol percentage. 

In Fig. 6, we plot the PE versus pilot symbol percentage (Np/N) for the OFDM-2 and 

the OFDM systems at various  values. As Fig. 6 shows, there is a significant performance 

difference (at  =10 dB) between the two systems. This significant difference is related to 

diversity enhancement in the OFDM-2 system due to half-symbol-spaced sampling [14].  

 

 
Fig. 6. The PEs for OFDM-2 and OFDM systems versus Np/N (2PSK and N=24 are considered in        

each system).   
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In Fig. 7, the simulated mean-squared error for channel acquisition associated with the 

pilot symbols (p) and the k-th data symbols (k) are plotted for the OFDM-2 system as a 

function of  under different numbers of subcarriers.  

                                                                                            

 
Fig. 7. The simulated k and p as a function of  under various values of N (2PSK, K=3, and Np/N=0.25 are 

used in all plots). 

 

From the data in Fig. 7, it is apparent that the channel acquisition error can be reduced 

by increasing the length of the transmitted sequence (N). Increasing N means more 

transmitted pilot symbols, which leads to a reduction in k and p. Besides, increasing N 

decreases the needed SNR to reach certain k and p. For example, a mean-squared error of 

(3.1×10-3) can be reached at 10 dB, 12.8 dB, 15.9 dB for N=256, N=128, and N=64, respectively. 

Finally, Fig. 8 illustrates the impact of time-synchronization mismatching between the 

source and the destination on the mean-squared error of the channel acquisition for both 

OFDM-2 and OFDM systems. Binary phase shift keying (BPSK) , N=64, and Np / N=0.25 are 

used to obtain the figure.  
 

 
Fig. 8. The mean-squared error as a function of time-synchronization mismatching.  
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The analytical curves are plotted according to Eq. (11). As depicted in the figure, 

time-synchronization mismatching has no impact on the channel acquisition error in the 

OFDM-2 system, while time-synchronization mismatching increases the mean-squared error 

of channel acquisition in the OFDM system. 
 

5. CONCLUSIONS 

In this paper, we study the OFDM system with a half-symbol-spaced receiver under 

channel acquisition errors. The considered system employs a pilot-padding channel 

acquisition scheme in which the received signals associated with pilot symbols are employed 

to acquire channel information for the data symbols. We use the Kronecker tensor product to 

insert pilot symbols at the transmitter and to separate pilot symbols at the receiver. The 

impact of SNR, pilot percentage, and the number of used subcarriers on both the PE and the 

mean-squared error of channel acquisition are investigated. The outcomes demonstrate that 

using half-symbol-spaced sampling at the OFDM receiver has successfully enhanced both 

the PE and the channel acquisition. We also examined the impact of the SNR (), the pilot 

percentage, and the number of subcarriers on the system performance. The findings reveal 

that the acquisition mean-squared error and the PE improved by increasing one of the above 

parameters. Furthermore, the obtained results show that the OFDM with the 

half-symbol-spaced receiver can tackle any deviation caused by time synchronization- 

mismatching between the source and the destination. 
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